33 if db_file_name !=
None:
34 db = qnlp_db.qnlp_db( os.path.basename(db_file_name), os.path.dirname(db_file_name) )
36 db = qnlp_db.qnlp_db(
"qnlp_tagged_corpus",
".")
38 basis_nouns = db.db_load(
"noun",
"basis")
39 basis_verbs = db.db_load(
"verb",
"basis")
41 basis_nouns_rev = db.db_load(
"noun",
"basis",
"reverse")
42 basis_verbs_rev = db.db_load(
"verb",
"basis",
"reverse")
44 corpus_nouns = db.db_load(
"noun",
"corpus")
45 corpus_verbs = db.db_load(
"verb",
"corpus")
58 print(
"###############################################################################")
63 if len(sys.argv) > 1
and sys.argv[1] ==
"t":
69 for ci
in corpus_nouns.keys():
75 elif (ci.casefold()
in [b.casefold()
for b
in basis_nouns.keys()]):
76 basis_set.add( basis_nouns[ci][0])
78 basis_set.update(
match_syn(ci, basis_nouns, pos_type=
'n', deep_search=deep_search) )
79 corpus_nouns[ci].append(list(basis_set))
83 for ci
in corpus_verbs.keys():
84 if (ci.casefold()
in [b.casefold()
for b
in basis_verbs.keys()]):
85 basis_set.add(basis_verbs[ci][0])
87 basis_set.update(
match_syn(ci, basis_verbs, pos_type=
'v', deep_search=deep_search) )
88 corpus_verbs[ci].append(list(basis_set))
92 from tabulate
import tabulate
93 print(
"###############################################################################")
94 print(
"############################## Noun encodings #################################")
95 print(
"###############################################################################")
96 d = [(k,v[0],[bin(i)
for i
in v[1]])
for k,v
in corpus_nouns.items()]
97 print(tabulate(d,[
"Token",
"ID",
"Encoding"]))
100 for k,v
in corpus_nouns.items():
103 print(k,
"->", basis_nouns_rev[j])
105 print(
"###############################################################################")
106 print(
"############################## Verb encodings #################################")
107 print(
"###############################################################################")
108 d = [(k,v[0],[bin(i)
for i
in v[1]])
for k,v
in corpus_verbs.items()]
109 print(tabulate(d,[
"Token",
"ID",
"Encoding"]))
112 for k,v
in corpus_verbs.items():
115 print(k,
"->", basis_verbs_rev[j])
def match_syn(word, basis_dat, pos_type=None, deep_search=False)
def basis_check(db_file_name=None)